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The method of the joint probability distribution function is

applied in order to estimate the structure-factor moduli of the

anomalous scatterer substructure. The two-wavelength case is

examined: the prior knowledge of the moduli |F�1 |, |Fÿ1 |, |F�2 |,

|Fÿ2 | is used to predict the value of |Foa| arising from the normal

scattering of the anomalous scatterers. The conclusive formula

is applied to ideal and to real cases: evidence of the usefulness

of the approach is obtained.
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1. Notation

N: number of atoms in the unit cell.

a: number of anomalous scatterers in the unit cell.

na = N ÿ a: number of non-anomalous scatterers.

": statistical Wilson coef®cient.

fj = f o
j + �fj + if 00j = f 0j + if 00j : scattering factor of the jth atom. f 0

is its real and f 00 is its imaginary part. The thermal factor is

included.

�Np =
PN

j�1�f 02j � f 002j �. The summation is calculated at the pth

wavelength and is extended to all the atoms in the unit cell.

�o =
Pna

j�1�f o
j �2. The summation is extended to all the non-

anomalous scatterers in the unit cell.

�oa =
Pa

j�1�f o
j �2. The summation is extended to all the

anomalous scatterers in the unit cell.

F� = jF�j exp�i'�� = Fh =
PN

j�1 fj exp�2�ihrj�.
E� = F�=�"�N�1=2 = R exp�i'�� = A+ + iB+.

Fÿ = jFÿj exp�i'ÿ� = Fÿh =
PN

j�1 fj exp�ÿ2�ihrj�.
Eÿ = Fÿ/�"�N�1=2 = G exp�i'ÿ� = Aÿ + iBÿ.

F�p , Fÿp , E�p = A�p + iB�p , Eÿp = Aÿp + iBÿp denote the values for

the pth wavelength.

Foa = |Foa| exp�i'oa� =
Pa

j�1 f o
j exp�2�ihrj�.

Eoa = Foa/ �"�oa�1=2 = Roaexp�i'oa� = Aoa + iBoa.

�ano = |F�| ÿ |Fÿ |.

2. Introduction

In SAS (single-wavelength anomalous scattering) techniques

�ano = |F�| ÿ |Fÿ| plays a central role in the recovery of the

positions of the anomalous scatterers. Indeed, �ano is involved

in the so-called anomalous difference Patterson synthesis

(Rossmann, 1961) and, in the form |F�j2 ÿ jFÿj2, enters into

the so-called `odd' Patterson function (Okaya et al., 1955).

�ano has also been successfully used as an approximate value

of jF 00j in direct-methods procedures aimed towards reco-

vering the anomalous scatterer substructure (Mukherjee et al.,

1989).



Owing to the tunability of synchrotron light, the relevance

of MAD techniques to the solution of protein structures has

strongly increased in recent years. A crucial step for deter-

mining phases via MAD techniques is the determination of the

anomalous scatterer substructure. In the approach suggested

by Karle and Hendrickson (Karle, 1980; Hendrickson, 1985;

PaÈhler et al., 1990), the following quantities are derived via a

least-squares procedure: the amplitudes for normal scattering

of the anomalous scattering substructure (|Foa|), the amplitude

for normal scattering arising from all atoms (|FT|) and the

difference in phase between Foa and FT (� = 'T ÿ 'oa). A

Patterson function is then calculated from which the anom-

alous scatterers can be located. The Karle and Hendrickson

approach often leads to unrealistically large |Foa| values: these

should be identi®ed and rejected before the calculation of the

Patterson synthesis (PaÈhler et al., 1990; Yang et al., 1990).

More recently, a Bayesian approach has been introduced

(Terwilliger, 1994) which exploits the prior information on the

number and type of anomalous scatterers in the asymmetric

unit to derive probabilistic distributions for the expected

values of |Foa|. In particular, Bayes's rule is used to estimate

the relative probability P(Foa, FT, �) that each possible set of

values Foa, FT, � are correct. The best average of each para-

meter is then calculated. The method reduces the tendency of

the Karle and Hendrickson approach to overestimate |Foa|

moduli.

The introduction of selenium into a protein as seleno-

methionine allowed the introduction of anomalous scatterers

directly into the structure, thus facilitating the collection of

diffraction data at useful wavelengths. This experimental

advance encouraged some second-generation direct-methods

programs (Miller et al., 1994; Sheldrick, 1998; Burla et al.,

2001) for locating Se atoms in the asymmetric unit (Smith et

al., 1998; Howell et al., 2000).

The Shake-and-Bake approach (Smith et al., 1998) derives

coordinates of the anomalous substructure from a single-

wavelength set of data. As three or more sets of diffraction

data are usually available from a MAD experiment, the

positions obtained from the solutions from each set of data are

used to identify and con®rm the correct solution. Statistical

criteria to normalize and select normalized difference struc-

ture factors for use in direct phasing have been suggested

(Blessing & Smith, 1999).

The two-wavelength case bene®ted from the special atten-

tion of several authors. Singh & Ramaseshan (1968) described

an algebraic technique using Bijvoet sums and differences

allowing the calculation of |Foa|. Unangst et al. (1967)

proposed an alternative technique based on Bijvoet ratios: a

modi®cation of this method was proposed by Cascarano et al.

(1982). Klop et al. (1989) showed that the ratio and sum-

differences techniques are equivalent. They provide two

solutions for |Foa|: the ambiguity is resolved only if one of them

is too large compared with the values allowed by the physical

system.

In this paper, we apply the rigorous method of the joint

probability distribution to estimate the amplitudes, for normal

scattering, of the structure factors of the anomalous scattering

substructure by simultaneously involving into the calculations

the structure factors F�, Fÿ at two wavelengths. The result

may be considered the ®rst step towards the application of the

method to the n-wavelength case. The mathematical approach

we use is able to take into account errors arising from different

sources.

3. The joint probability distribution P(Eoa, E
+
1, E

+
2, E
ÿ
1,

Eÿ2)

The joint probability distribution P(E�, Eÿ) was indepen-

dently obtained by Hauptman (1982) and by Giacovazzo

(1983). From such a distribution, the expected value of

cos('+ + 'ÿ) could be estimated and therefore the approx-

imation

4jF 00j2 � jF�j2 � jFÿj2 ÿ 2jF�Fÿjhcos�'� � 'ÿ�i
was suggested as a possible estimate of the anomalous scat-

tering substructure (Cascarano & Giacovazzo, 1984), where

F 00 =
Pa

j�i f 00j exp�2�hrj�. Since the information contained in

single-wavelength data is rather poor, in this section we derive

the more useful distribution P(Eoa, E�1 , E�2 , Eÿ1 , Eÿ2 ). We

separate the normal scattering of the anomalous scatterer

substructure from the other variables. Ei, i = 1, 2 denote the

normalized structure factors at wavelengths �1 and �2,

respectively. We will also suppose the following.

(i) The positions of all the atoms in the asymmetric unit are

our primitive random variables.

(ii) For the pth wavelength

A�p �
�Pna

j�1

f o
j cos�2�hrj� �

Pa

j�1

f 0jp cos�2�hrj�

ÿ Pa

j�1

f 00jp sin�2�hrj� � j��p j cos ��p

��
"�Np

ÿ �1=2
;

B�p �
�Pna

j�1

f o
j sin�2�hrj� �

Pa

j�1

f 0jp sin�2�hrj�

� Pa

j�1

f 00jp cos�2�hrj� � j��p j sin ��p

��
"�Np

ÿ �1=2
;

Aÿp �
�Pna

j�1

f o
j cos�2�hrj� �

Pa

j�1

f 0jp cos�2�hrj�

� Pa

j�1

f 00jp sin�2�hrj� � j�ÿp j cos �ÿp

��
"�Np

ÿ �1=2
;

Bÿp �
�
ÿPna

j�1

f o
j sin�2�hrj� ÿ

Pa

j�1

f 0jp sin�2�hrj�

� Pa

j�1

f 00jp cos�2�hrj� � j�ÿp j sin �ÿp

��
"�Np

ÿ �1=2
;

Aoa �
Pa

j�1

f o
j cos�2�hrj�

�
"�oa� �1=2;

Boa �
Pa

j�1

f o
j sin�2�hrj�

�
"�oa� �1=2:

According to the above notation,

�� � j��j exp�i���
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and

�ÿ � j�ÿj exp�i�ÿ�

are the measurement errors relative to F� and Fÿ, respec-

tively. The error is assumed to be a complex quantity because

its effects in¯uence both the real and the imaginary compo-

nents of the structure factors. Since |Foa| is not measured (it

will be estimated from probabilistic considerations), no error

will be associated with it.

(iii) h��1 i = h��2 i = h�ÿ1 i = h�ÿ2 i = 0.

(iv) h��1 ��2 i = h��1 �ÿ1 i = h�ÿ1 �ÿ2 i = h��2 �ÿ2 i = 0. This implies

that errors are uncorrelated.

The characteristic function of P(Aoa, A�1 , A�2 , Aÿ1 , Aÿ2 , Boa, B�1 ,

B�2 , Bÿ1 , Bÿ2 ) is

C�ua;u
�
1 ; u�2 ; uÿ1 ; uÿ2 ; va; v�1 ; v�2 ; vÿ1 ; vÿ2 �

� exp
�ÿ 1

4 �k11�u2
a � v2

a� � k22�u�2
1 � v�2

1 � � k33�u�2
2 � v�2

2 �
� k44�uÿ2

1 � vÿ2
1 � � k55�uÿ2

2 � vÿ2
2 � � 2k24�u�1 uÿ1 ÿ v�1 vÿ1 �

� 2k35�u�2 uÿ2 ÿ v�2 vÿ2 � � 2k29�u�1 vÿ1 � v�1 uÿ1 �
� 2k3;10�u�2 vÿ2 � v�2 uÿ2 � � 2k34�u�2 uÿ1 ÿ v�2 vÿ1 �
� 2k23�u�1 u�2 � v�1 v�2 � � 2k25�u�1 uÿ2 ÿ v�1 vÿ2 �
� 2k2;10�u�1 vÿ2 � v�1 uÿ2 � � 2k28�u�1 v�2 ÿ v�1 u�2 �
� 2k12�uau�1 � vav�1 � � 2k14�uauÿ1 ÿ vavÿ1 �
� 2k17�uav�1 ÿ vau�1 � � 2k19�uavÿ1 � vauÿ1 �
� 2k13�uau�2 � vav�2 � � 2k15�uauÿ2 ÿ vavÿ2 �
� 2k18�uav�2 ÿ vau�2 � � 2k1;10�uavÿ2 � vauÿ2 �
� 2k39�u�2 vÿ1 � v�2 uÿ1 � � 2k45�uÿ1 uÿ2 � vÿ1 vÿ2 �
� 2k4;10�uÿ1 vÿ2 ÿ vÿ1 uÿ2 ��

	
; �1�

where ua, u�1 , u�2 , . . . , vÿ2 are carrying variables associated with

Aoa, A�1 , A�2 , . . . , Bÿ2 , respectively.

(1) can also be written as

C � exp�ÿ 1
4 �UKU�� �2�

where

U � �ua; u�1 ; u�2 ; uÿ1 ; uÿ2 ; va; v�1 ; v�2 ; vÿ1 ; vÿ2 �

and K is the symmetric square matrix, the elements of which

are speci®ed as follows:

k11 � k66 � 1

k22 � k77 � e�1 � 1� ��2
1 with ��2

1 � hj��1 j2i
�
"�N1

ÿ �
k33 � k88 � e�2 � 1� ��2

2 with ��2
2 � hj��2 j2i

�
"�N2

ÿ �
k44 � k99 � eÿ1 � 1� �ÿ2

1 with �ÿ2
1 � hj�ÿ1 j2i

�
"�N1

ÿ �
k55 � k10;10 � eÿ2 � 1� �ÿ2

2 with �ÿ2
2 � hj�ÿ2 j2i

�
"�N2

ÿ �
k12 � k14 � k67 � ÿk69 � S9

�
�oa�N1

ÿ �1=2

k13 � k15 � k68 � ÿk6;10 � S11

�
�oa�N2

ÿ �1=2

k16 � k27 � k38 � k49 � k5;10 � 0

k17 � k19 � k46 � ÿk26 � S10

�
�oa�N1

ÿ �1=2

k18 � k1;10 � ÿk36 � k56 � S12

�
�oa�N2

ÿ �1=2

k23 � k45 � k9;10 � k78 � �o � S5 � S6� �� �N1�N2

ÿ �1=2

k24 � ÿk79 � �o � S1� ���N1

k25 � k34 � ÿk7;10 � ÿk89 � �o � S5 ÿ S6� �� �N1�N2

ÿ �1=2

k28 � ÿk37 � �k4;10 � ÿk59 � �S7 ÿ S8�
�

�N1�N2

ÿ �1=2

k29 � k47 � S3

�
�N1

k2;10 � k39 � k48 � k57 � �S7 � S8�
�

�N1�N2

ÿ �1=2

k35 � ÿk8;10 � �o � S2� ���N2

k3;10 � k58 � S4

�
�N2;

where

S1 �
P

a

�f 02j1 ÿ f 00j1�; S2 �
P

a

�f 02j2 ÿ f 00j2�; S3 � 2
P

a

f 0j1f 00j1;

S4 � 2
P

a

f 0j2f 00j2; S5 �
P

a

f 0j1f 0j2; S6 �
P

a

f 00j1f 00j2;

S7 �
P

a

f 0j1f 00j2; S8 �
P

a

f 00j1f 0j2; S9 �
P

a

f o
j f 0j1;

S10 �
P

a

f o
j f 00j1; S11 �

P
a

f o
j f 0j2; S12 �

P
a

f o
j f 00j2:

The joint probability distribution function P(Aoa, A�1 , A�2 , Aÿ1 ,

Aÿ2 , Boa, B�1 , B�2 , Bÿ1 , Bÿ2 ) (P for short), is obtained by Fourier

inversion of (2). We obtain

P � �ÿ5�det K�ÿ1=2 exp�ÿ 1
2 TKÿ1T�

� �ÿ5�det K�ÿ1=2 expfÿ��11�A2
oa � B2

oa� � �22�A�2
1 � B�2

1 �
� �33�A�2

2 � B�2
2 � � �44�Aÿ2

1 � Bÿ2
1 � � �55�Aÿ2

2 � Bÿ2
2 �

� 2�24�A�1 Aÿ1 ÿ B�1 Bÿ1 � � 2�35�A�2 Aÿ2 ÿ B�2 Bÿ2 �
� 2�29�A�1 Bÿ1 � B�1 Aÿ1 � � 2�3;10�A�2 Bÿ2 � B�2 Aÿ2 �
� 2�23�A�1 A�2 � B�1 B�2 � � 2�25�A�1 Aÿ2 ÿ B�1 Bÿ2 �
� 2�2;10�A�1 Bÿ2 � B�1 Aÿ2 � � 2�28�A�1 B�2 ÿ B�1 A�2 �
� 2�12�AoaA�1 � BoaB�1 � � 2�14�AoaAÿ1 ÿ BoaBÿ1 �
� 2�17�AoaB�1 ÿ BoaA�1 � � 2�19�AoaBÿ1 � BoaAÿ1 �
� 2�13�AoaA�2 � BoaB�2 � � 2�15�AoaAÿ2 ÿ BoaBÿ2 �
� 2�18�AoaB�2 ÿ BoaA�2 � � 2�1;10�AoaBÿ2 � BoaAÿ2 �
� 2�34�A�2 Aÿ1 ÿ B�2 Bÿ1 � � 2�39�A�2 Bÿ1 � B�2 Aÿ1 �
� 2�45�Aÿ1 Aÿ2 � Bÿ1 Bÿ2 � � 2�4;10�Aÿ1 Bÿ2 ÿ Bÿ1 Aÿ2 ��g; �3�

where �pq are the elements of the matrix Kÿ1. Owing to the

large correlation between the variables of the distribution P,



(det K) is expected to be close to zero (ill-conditioned matrix).

Values between 10ÿ20 and 10ÿ40 are usual for cases commonly

found in practice. Vice versa, (det Kÿ1) is expected to be quite

large. The ill-conditioning effect will be large when the

anomalous signal is very small, e.g. this occurs when �f 01 ��f 02
or when f 001 � f 002 .

The change of variables

Aoa � Roa cos 'a; Boa � Roa sin 'a;

A�j � Rj cos '�j ; B�j � Rj sin '�j ;

Aÿj � Gj cos 'ÿj ; Bÿj � Gj sin 'ÿj

for j = 1, 2 transforms (3) into

P�Roa;R1;G1;R2;G2; 'a; '
�
1 ; . . . ; 'ÿ2 �

' �ÿ5RoaR1R2G1G2�det K�ÿ1=2

� expfÿ��11R2
oa � �22R2

1 � �33R2
2 � �44G2

1 � �55G2
2

� 2�23R1R2 cos�'�1 ÿ '�2 � ÿ 2�28R1R2 sin�'�1 ÿ '�2 �
� 2�24R1G1 cos�'�1 � 'ÿ1 � � 2�29R1G1 sin�'�1 � 'ÿ1 �
� 2�25R1G2 cos�'�1 � 'ÿ2 � � 2�2;10R1G2 sin�'�1 � 'ÿ2 �
� 2�34G1R2 cos�'ÿ1 � '�2 � � 2�39G1R2 sin�'ÿ1 � '�2 �
� 2�35R2G2 cos�'�2 � 'ÿ2 � � 2�3;10R2G2 sin�'�2 � 'ÿ2 �
� 2�45G1G2 cos�'ÿ1 ÿ 'ÿ2 � ÿ 2�4;10G1G2 sin�'ÿ1 ÿ 'ÿ2 �
� 2�12RoaR1 cos�'a ÿ '�1 � ÿ 2�17RoaR1 sin�'a ÿ '�1 �
� 2�13RoaR2 cos�'a ÿ '�2 � ÿ 2�18RoaR2 sin�'a ÿ '�2 �
� 2�14RoaG1 cos�'a � 'ÿ1 � ÿ 2�19RoaG1 sin�'a � 'ÿ1 �
� 2�15RoaG2 cos�'a � 'ÿ2 � � 2�1;10RoaG2 sin�'a � 'ÿ2 ��g:

�4�
Distribution (4) is the main result of this paper. It may be

noticed that (i) all the �iis are positive numbers (to comply

with the classical Wilson statistics) and (ii) the moduli of the

coef®cients

�28; �29; �2;10; �39; �3;10; �4;10

are found to be several orders of magnitude smaller than the

others. Indeed, such coef®cients cooperate to de®ne the

probability of the expected sign of the invariant sinuses, which

are weak phase relationships (see Hauptman, 1982, and

Giacovazzo, 1983, for the single-wavelength case). They could

also be omitted from (4) without losing valuable information.

4. The conditional probability P(Roa|R1, R2, G1, G2)

No measured value is available for Roa. We will estimate it by

®rst calculating the conditional probability

P�RoajR1;R2;G1;G2� �5�
and then the conditional mean value h(Roa|R1, R2, G1, G2)i.
The derivation of (5) requires ®rst the calculation of

P�Roa;R1; . . . ;G2� �R2�
o

. . .
R2�
o

P�Roa;R1; . . . ;G2; 'a; . . . ; 'ÿ2 � d'a . . . d'ÿ2 �6�

and then estimation of the ratio

P�Roa;R1;R2;G1;G2�
�R1

o

P�Roa;R1;R2;G1;G2� dRoa:

The estimate of (6) cannot be performed via exact calcula-

tions. The results obtained in our previous papers (Giacovazzo

& Siliqi, 2001a,b,c) suggest the usefulness of the approxima-

tion

'�1 � '�2 � ÿ'ÿ1 � ÿ'ÿ2 : �7�
We, therefore, introduce (7) into (4). We then obtain

P�Roa; 'a; '
�
1 jR1;R2;G1;G2� �8�
� LRoa exp�ÿ�11R2

oa ÿ 2RoaQ1 cos�'�1 ÿ 'a�
ÿ 2RoaQ2 sin�'�1 ÿ 'a��;

where L is a suitable normalizing constant,

Q1 � �12R1 � �13R2 � �14G1 � �15G2

Q2 � �17R1 � �18R2 ÿ �19G1 ÿ �1;10G2:

From (8) the conditional distribution

P�RoajR1;R2;G1;G2� � 2�11Roa exp�ÿ�11R2
oa�

� exp�ÿX2=�11�I0�2RoaX� �9�
is obtained, where X2 = Q2

1 �Q2
2.

(9) may be rewritten

P�RoajR1;R2;G1;G2� � LW�Roa�M�Roa; �11;X�;
where W(Roa) = 2Roaexp(ÿR2

oa) is the classical Wilson distri-

bution for acentric crystals, M(Roa, �11, X) = exp[(1 ÿ
�11)R2

oa]Io(2RoaX) and L = �11exp(ÿX2/�11).

The new form of P suggests that prior knowledge of R1, R2,

G1 and G2 modi®es the Wilson distribution through the

function M, which is the product of two functions: a rapidly

decreasing exponential function (�11 > 1) and the monotonic

increasing function Io. The form and the location of P will

depend of the �11 and X parameters.

The location may be calculated as follows. SinceR1
o

x� exp�ÿ�x2�Io�bx� � ÿ���� 1�=2��2����1�=2�ÿ1 �10�

� exp�b2=�4���1F1

1ÿ �
2

; 1;
ÿb2

4�

� �
;

where ÿ and 1F1 are the gamma and the con¯uent hyper-

geometric function, respectively, from (10) we obtain

hRoajR1;R2;G1;G2i � 2ÿ1��=�11�1F1 ÿ
1

2
; 1;ÿX2

�11

� �
:

Since 1F1�ÿ 1
2 ; 1;ÿz2� is well approximated by the hyperbole

y = �1� 2z2=�1=2�1=2 in the full range (0, 1), the expected

value of Roa may be calculated via the simpler expression

hRoajR1;R2;G1;G2i �
1

2
��=�11�1=2 1� 4

�

X2

�11

� �1=2

: �11�

(9) is shown in Fig. 1 for selected pairs (�11, X). The different

location of the maxima and the different sharpness of the
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curves suggest that high values of hRoai do not necessarily

correlate with sharp distributions.

The standard deviation associated with the estimate (11)

may be calculated as follows. Since

hR2
oajR1;R2;G1;G2i2 � ��=4��ÿ1

11 � X2�ÿ2
11

and

hR2
oajR1;R2;G1;G2i � �ÿ1

11 � X2�ÿ2
11

then

�Roa
� �hR2

oaj . . .i ÿ hRoaj . . .i2�1=2 � 1ÿ �
4

� �
�ÿ1

11

h i1=2

;

from which

hRoaj . . .i
�Roa

� �=4� X2=�11

1ÿ �=4

� �1=2

: �12�

Since �11 is always expected to be positive, the expected values

of hRoai and of �Roa
are always positive.

As well as the re¯ections with the largest values of Fobs/�F,

which play a central role in most crystallographic calculations,

the re¯ections with the largest value of the ratio (12) are likely

to be the most useful ones. Fig. 2 shows that (12) is a mono-

tonic function of z = X2/�11: accordingly, large z values will

characterize accurate estimates. Since large values of X2 de®ne

large values of R2
oa, a large percentage of accurate estimates

are expected to be associated with large values of hR2
oa| . . . i.

This result is quite encouraging; indeed, the ef®ciency of direct

methods (see x6) increases when they are applied to large

normalized structure-factor moduli.

5. The centric case

In the centric case |F�p | = |Fÿp | = |Fp|. We therefore study the

joint probability distribution function

P�Eoa;A1;A2;B1;B2� �13�
where

Eoa � 2
Pa=2

j�1

f o
j cos 2�hrj

�
�1=2

oa

Ap �
�

2
Pna=2

j�1

f o
j cos 2�hrj � 2

Pa=2

j�1

f 0jp cos 2�hrj

� j�pj cos �p

��
�"�Np�1=2

Bp �
�

2
Pa=2

j�1

f 00jp cos 2�hrjp � j�pj sin �p

��
�"�Np�1=2:

The characteristic function of (13) is

C�ua; u1; u2; v1; v2� � exp�ÿ 1
2 UKU�; �14�

where K is the symmetric matrix

Figure 2
Plot of y = [(�/4 + z)/(1 ÿ �/4)]1/2.

Figure 1
The probability distribution (9) is plotted for some selected values of �11

andX. (a)Roa =0.21,�11 =49.8,X=7.5; (b)Roa =1.80,�11 =1136.4, X=2043.6;
2043.6; (c) Roa = 3.15, �11 = 101.4, X = 318.8; (d) Roa = 3.44, �11 = 724.5,
X = 2488.9; (e) Roa = 4.59, �11 = 110.3, X = 505.7; (f) Roa = 4.75, �11 = 13.3,
X = 63.0

K �

1 S9=��oa�N1�1=2
S11=��oa�N1�1=2

S10=��oa�N1�1=2
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Table 1
Expected �f 0 and f 00 values for each chosen � value.

Cyanase 1srv

Wavelength
(AÊ ) �f 0 f 00

Wavelength
(AÊ ) �f 0 f 00

�1 1.0781 ÿ2.112 0.595 �1 1.1271 ÿ1.805 0.646
�2 0.9795 ÿ9.643 0.499 �2 0.9793 ÿ8.582 3.843
�3 0.9793 ÿ8.582 3.843 �3 0.9791 ÿ7.663 3.841
�4 0.9465 ÿ2.618 3.578 �4 0.9465 ÿ2.618 3.578



e01 � 1� �2
1=2; e02 � 1� �2

2=2;

S13 �
Pa

j�1

f 002j1

 !�
�N1; S14 �

Pa

j�1

f 002j2

 !�
�N2

and

U � �ua; u1; u2; v1; v2�:
The distribution (14) is the Fourier transform of (14). We

obtain

P�Eoa;A1;A2;B1;B2� � �2��ÿ5=2�det K�ÿ1=2

� exp�ÿ 1
2 ��11E2

oa � �22A2
1 � �33A2

2 � �44B2
1 � �55B2

2

� 2�12EoaA1 � 2�13EoaA2 � 2�14EoaB1 � 2�15EoaB2

� 2�23A1A2 � 2�24A1B1 � 2�25A1B2 � 2�34A2B1

� 2�35A2B2 � 2�45B1B2��:
The change of variables

A1 � R1 cos '1; A2 � R2 cos '2

B1 � R1 sin '1; B2 � R2 sin '2

and the approximation '1 � '2 led to

P�Eoa;R1;R2; '1� � �2��ÿ3=2
R1R2�det K�ÿ1=2

� expfÿ 1
2 �11R2

oa � 1
4 ��22 � �44�R2

1 � 1
4 ��33 � �55�R2

2

� 1
2 ��23 � �45�R1R2 � 1

4 X1 cos�2�'1 ÿ �1��
� EoaXoa cos�'1 ÿ �oa�g;

where

X2
1 � f�R2

1��22 ÿ �44� � R2
2��33 ÿ �55� � 2R1R2��23 ÿ �45��2

� 4�R2
1�24 � R2

2�35 � R1R2��25 � �34��2g
� X2

1B � X2
1T

tan 2�1 � X1T=X1B

X2
oa � ��12R1 � �13R2�2 � ��14R1 � �15R2�2
� X2

oaB � X2
oaT

tan �oa � XoaT=XoaB:

On assuming 2'1 � 0 and '1 � 0, �, we obtain the conditional

distribution

P�EoajR1;R2� � L exp�ÿ 1
2 �11R2

oa� cosh�RoaXoa�; �15�
where L is a suitable normalization constant. By applyingR1

o

exp�ÿ�x2� cosh�ax� dx � 1

2

�

�
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exp
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� �
to normalize (15) andR1

o
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exp
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� �
to obtain the expected value of R2

oa, we obtain

hR2
oajR1;R2i � �ÿ1

11 � X2
oa�
ÿ2
11 : �16�

(16) is the desired relation in centric space groups.

Considerations similar to those described for the acentric

case lead to

hRoajR1;R2i �
�

4
�ÿ1

11 � X2
oa�
ÿ2
11 :

6. Experimental applications

To check the usefulness of our probabilistic approach we

applied our conclusive formula (11) to the following two test

structures (selenomethionine MAD data).

(i) 1srv (Walsh et al., 1999), space group C2221, unit-cell

parameters a = 63.47, b = 65.96, c = 75.03 AÊ , 1186 non-H atoms

and three methionines in 145 amino acids. Multiwavelength

data to 2.27 AÊ resolution were collected. This crystal structure

was originally undertaken to check the feasibility of ultrafast

protein crystal structure determination via MAD techniques.

(ii) Cyanase (Walsh et al., 2000), space group P1, unit-cell

parameters a = 76.34, b = 81.03, c = 82.30 AÊ , � = 70.3, � = 72.2,


 = 66.4�, 13965 non-H atoms and 40 methionines in 1560

residues. Multiwavelength data to 2.4 AÊ resolution were

collected.

(11) was ®rst applied to calculated data without errors (i.e. |E|

without errors, �jEj=jEj = 0.01). 7303 re¯ections (to 2.27 AÊ

resolution) for 1srv and 64 022 re¯ections for cyanase (to

2.4 AÊ resolution) were computed for the various wavelengths

quoted in Table 1. To check the relative ef®ciency of (11) we

calculated for our test structures the values of

RA �
P j�Roa�t ÿ hRoaijP�Roa�t

;

where (Roa)t is the true value of Roa. The estimates are quite

good for some pairs of wavelengths. However, in spite of the

fact that we are using data without errors, the RA values are

dispersed over a rather wide range (between 0.09 and 0.41).

Their trend can be correlated with the values of the pair

(�02, �002), where

�02 � ���f 0��i ÿ ��f 0��j�2 and �002 � �f 00�i ÿ f 00�j�2:
Pairs of wavelengths showing suf®ciently large values of both

�02 and �002 are characterized by low values of RA; vice versa,

cases for which at least one of �02 and �0 02 is very small show

large values of RA. While this result may be reasonable when

observed data are used, this is unexpected in the case of

Table 2, where calculated (without error) data are used.

Two questions are therefore still open: (i) why do we end

with different RA values for different wavelength pairs and (ii)

why is the correlation between RA and the pair (�02, �002) not

very high [i.e. for cyanase RA = 0.14 when (�02, �002) = (35.6,

0.1), while RA = 0.19 when (�02, �002) = (49.4, 9.5)]? We cannot

conclusively answer the two questions, but we suggest the

following limiting factors for our approach: (i) our joint

probability distributions neglect terms of high order (a simple

Gaussian distribution is proposed) and (ii) the use of the

approximation (7) [the anomalous scatterer contribution is

responsible for the small phase differences among Friedel

pairs, which are assumed to be zero]. In spite of the previous

limitations, Table 2 suggests that our approach is able,
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provided a favourable pair (�02, �002) is

used, to estimate the Roa values with quite

high accuracy, given the four magnitudes

F�i , Fÿi , F�j and Fÿj .

To check how sensitive the method is to

the assumed content and scattering factors

of the anomalous structure, we used the

cyanase calculated data and (i) varied the

number of anomalous scatterers (up to

�40% of the expected content) and (ii)

modi®ed f 0 and f 00 for each wavelength (up

to �40% of their expected values). The resulting RA values

did not vary for more then a few units percent (typically from

0.36 to 0.39, from 0.15 to 0.18).

We now check the average ef®ciency of our formula (11)

versus the observed data. The results are shown in Table 3.

While the RA values are of moderate size for 1srv, the larger

experimental errors in cyanase data lead to larger RA values.

Since the experimental errors (in the statistical sense) increase

the dispersion of the anomalous differences and of the

dispersive differences, the expected consequence for our

probabilistic approach is the overestimation of the large Roa

values. For example, in Table 4 we give for the pair (�1, �2) of

cyanase the number of re¯ections (Nref) for which hRoai >

TRH and the respective value of RA. To check whether (11) is

overestimating or underestimating the Roa values in the set, we

calculated for each set of re¯ections the residual

SRA �
P�Roa�t ÿ hRoaiP�R�t :

A negative value of SRA indicates overestimation and a

positive value underestimation. Table 4 clearly suggests that at

large TRH values (11) overestimates, while it underestimates

at low TRH value. The same trend has been veri®ed for 1srv.

To obtain an insight into the ef®ciency of our probabilistic

approach, we have applied the program REVISE (Fan et al.,

1993; Collaborative Computational Project, Number 4, 1994)

to the observed data of cyanase and 1srv. REVISE provides

estimates of quantities

FM � jF
0j2 � jF 00j2

�f 02 � f 002
�17�

via a least-squares procedure, minimizing undesirable ¯uc-

tuations of the experimental data. F 0 and F 00 are the real and

imaginary parts of the anomalous scattering structure factor,

respectively. The discrepancy index RA calculated for the

quantity (17) (all re¯ections included), using all four wave-

lengths simultaneously, is 0.46 for cyanase and 0.51 for 1srv.

As soon as the hRoai estimates were available, the crystal

structure solution of 1srv and cyanase was attempted by

traditional direct-methods procedures. About 600 re¯ections

for 1srv and 2000 for cyanase (those with the largest values of

hRoai were selected, triplet invariants were calculated and the

tangent formula applied in a multisolution random approach.

For both the test structures, the traditional ®gures of merit

clearly indicated the good solutions. The results are as follows.

For 1srv, the crystal structure solution succeeded for each

pair of wavelengths. The average number of good solutions

among 40 trials was three; each of them correctly locating all

the three Se atoms.

For cyanase, the crystal structure solution was tried for the

pairs (�1, �2) and (�2, �3). Eight good solutions over 40 trials

were found for the ®rst pair, locating (on average) 38 of the 40

Se atoms. For the second pair of wavelengths, 36 good solu-

tions over 40 trials were found, locating (on average) 34 of the

40 Se atoms.

7. Conclusions

A probabilistic theory has been described which is able to

obtain, via two-wavelength diffraction data, reliable estimates

of the structure-factor moduli of the anomalous scatterer

substructure. The approach has been successfully applied to

the experimental data of two test structures. The method has a

large power reserve. Indeed, it may be easily generalized to

more than two wavelengths, thus becoming able to exploit the

full information of a MAD experiment; also, our tests did not

use any ®ltering criterion. These statistical criteria play a

central role in excluding unreliable data and are usually based

on the normalized differences at the given wavelength (Bles-

sing & Smith, 1999). The nature of our probabilistic approach

can pro®t by ®ltering criteria which use dispersive differences

in addition to anomalous differences.

Table 3
Experimental data: the values of RA for the acentric re¯ections of the test
structures.

(�1, �2) (�1, �3) (�1, �4) (�2, �3) (�2, �4) (�3, �4)

Cyanase RA 0.39 0.41 0.46 0.42 0.42 0.44
1srv RA 0.39 0.33 0.36 0.38 0.35 0.34

Table 4
Experimental (�1, �2) data of cyanase.

Nref(i) is the number of re¯ections for which hRoai is larger than TRH(i) and
smaller than TRH(i + 1) (e.g. Nref = 658 is the number of re¯ections for which
hRoai is larger than 0.3 and smaller than 0.6); RA is the corresponding residual
value.

TRH 0.00 0.30 0.60 0.90 1.20 1.50 1.80 2.10

Nref 27 658 26359 19634 5048 1616 485 236
RA 2.39 0.79 0.45 0.38 0.32 0.28 0.25 0.27
SRA 2.32 0.54 0.02 ÿ0.01 ÿ0.02 ÿ0.03 ÿ0.07 ÿ0.12

Table 2
Calculated data.

RA values for the different pairs of wavelengths (�i, �j) and for each test structure. The values of the
quantities �02 = [(�f 0��i ÿ (�f 0��j]

2 and �002 = (f 00�i ÿ f 00�j)
2 are also given.

(�1, �2) (�1, �3) (�1, �4) (�2, �3) (�2, �4) (�3, �4)

Cyanase RA 0.37 0.11 0.41 0.40 0.19 0.14
(�02, �002) (56.7, 0.0) (42.9, 10.5) (0.3, 8.9) (1.1, 11.2) (49.4, 9.5) (35.6, 0.1)

1srv RA 0.14 0.09 0.34 0.39 0.35 0.37
(�02, �002) (45.9, 10.2) (34.3, 10.2) (0.7, 8.6) (0.8, 0.0) (35.6, 0.1) (25.5,0.1)



Our next efforts will be devoted to devise a probabilistic

procedure able to exploit the opportunities described in the

three points above.

The authors thank one of the referees for useful comments.
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